

[This question paper contains 8 printed pages]

Your Roll No.	:	2010			
Sl. No. of Q. Paper	: 2201 I	С			
Unique Paper Code	: 32171401				
Name of the Course	: B.Sc. (Hons.)	: B.Sc. (Hons.) Chemistry			
Name of the Paper	: Inorganic Chemistry- III, Coordination Chemistry				
	• IV				

Semester

Time : 3 Hours

Maximum Marks: 75

Instructions for Candidates :

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt **Six** questions in **all**.
- (c) Question **No.1** is compulsory.
- **1.** Attempt any **five** of the following : $5 \times 3 = 15$
 - (i) In comparison to lanthanoids, actinoids have greater tendency to form complexes. Explain.
 - (ii) Metal ions with d³ and d⁸ electronic configuration, prefers octahedral geometry. Justify.

- (iii) Explain the variation of lattice energy of the divalent 3d transition metal halides.
- (iv) When hydrogen peroxide is added to the solution of potassium dichromate in dilute sulphuric acid and the resultant solution is shaken with ether, a blue coloured solution is obtained. Give the relevant chemical equation and the structure of the compound responsible for imparting blue colour in ether.
- (v) What is nephelauxetic effect ? How does this effect explain the covalent nature of metalligand bonds ?
- (vi) $[Cu(NH_3)_4]^{2+}$ is square planar, while $CuCl_4^{2-}$ is tetrahedral. Give reason.
- (vii)Why do transition metals act as good catalysts?
- 2. (i) Name the following complexes according to the IUPAC system of nomenclature (attempt any four):
 - (a) $[(en)_2 Co(O_2)(NH_2)Co(en)_2](NO_3)_4$
 - (b) [Co(CO₃)(NH₃)₄]NO₃

- (c) $K_2[OsCl_5N]$
- (d) Na[Pt Br Cl(NH₃)(NO₂)]
- (e) $[Pt(py)_4][PtCl_4]$
- (ii) Write the formulae of the following complexes (attempt any four): 4
 - (a) Tris(ethylenediamine)cobalt(III) hexacyanidochromate(III).
 - (b) Tetraamminechloridonitrit-Ncobalt(III)ion
 - (c) Tetrakis(triphenylphosphane)platinum(0)
 - (d) Pentaamminethiocyanato-N-chromium (III)tetrachloridozincate(II)
 - (e) Potassium tetraazidocobaltate(II)
- (iii) A solution containing 0.319 g of CrCl₃.6H₂O was passed through cation exchange resin in the acid form and the acid liberated was titrated with a standard solution of NaOH. This required 28.5 mL of 0.125 M NaOH. Determine the correct formula of Cr(III) complex.

2

- 3. (i) Why Charge transfer transitions give rise to more intense absorptions ? State the nature of transitions responsible for colour in the following species :
 - (a) $[Co(H_2O)_6]^{3+}$
 - (b) KMnO₄
 - (c) $[Fe(dipy)_3]^{2+}$ and
 - (d) CrO₄²⁻
 - (ii) The complex $[Pt(NH_3)_2(NO_2)_2]$ exists in two isomeric forms α and β . The α -form reacts with oxalic acid to form $[Pt(NH_3)_2(C_2O_4)]$ whereas β - form gives $[Pt(NH_3)_2(C_2O_4H)_2]$. Give the structures of α and β forms. Explain what physical method can be used to differentiate between the two forms. 4
 - (iii) Based on **Trans effect**, write the products of the following reactions : 4
 - (a) $\left[PtCl_4\right]^{2-} \xrightarrow{NH_3} \left[A\right] \xrightarrow{NO_2^-} \left[B\right]$
 - (b) $\left[Pt(NH_3)_4\right]^{2+} \xrightarrow{NO_2^-} [A] \xrightarrow{NH_3} [B]$

- 4. (i) Using the valence bond theory, predict the type of hybridization involved, along with the geometry and the magnetic moment (in Bohr magnetons) for [Ni(CN)₄]²⁻ and [MnF₆]³⁻.
 - (ii) Coordinated water molecules in $[Fe(H_2O)_6]^{2+}$ can be successively replaced by 2,2'dipyridyl, finally resulting in the formation of $[Fe(dipy)_3]^{2+}$. In this process, the third equilibrium constant is observed to be greater than the second one. Explain.
 - (iii)The magnitude of the crystal field splitting in tetrahedral complexes is considerably less than in octahedral fields. Explain.
 - 4

- 5. Explain the following :
 - (i) Show by means of a diagram, how the pattern of d-orbital splitting changes as an octahedral complex undergoes tetragonal distortion and eventually becomes a square planar complexes.
 - (ii) Why are chelated complexes more stable in comparison to non-chelated complexes ?
 Which one of the following is more stable ?
 Justify your answer : 4
 - (a) $[Co(en)_3]^{3+}$ or $[Co(dien)_2]^{3+}$
 - (b) $[Ni(en)_3]^{2+}$ or $[Cu(en)_3]^{2+}$
 - 5

(iii) $NiFe_2O_4$ is inverse spinel while Mn_3O_4 is a normal spinel. Explain on the basis of CFT.

4

4

6. (i) Indicate the type of isomerism exhibited by the following pairs of isomers and suggest one method in each set to distinguish them :

(a) cis - $[Pt(NH_3)_2Cl_2]$ and trans - $[Pt(NH_3)_2Cl_2]$

(b) $[Co(NH_3)_5SO_4]Cl$ and $[Co(NH_3)_5Cl]SO_4$

- (ii) On the basis of molecular orbital theory, explain the order of Δ_0 for octahedral complexes having the ligands I⁻ and CO.
- (iii)Calculate in kJmol⁻¹, the crystal field stabilization energy attained by Fe²⁺ ion in an octahedral oxide ion environment. Given, Δ_0 for Fe²⁺ in oxide ion environment is 124 kJmol⁻¹. What will be the value of CFSE in a tetrahedral environment of oxide ion. 4

- (i) Explain the effect of temperature on magnetic susceptibility of ferromagnetic and antiferromagnetic materials.
 - (ii) In the electronic spectra of [Ti(H₂O)₆]³⁺ single broad peak with maximum at 20300 cm⁻¹ is observed. Explain.
 - (iii) What is lanthanoid contraction ? What are the major consequences of lanthanoid contraction ?
- 8. (i) Given below are the Latimer diagram for Cr in acidic medium : 6

 $Cr_2O_7^{2-} \xrightarrow{1.33} Cr^{3+} \xrightarrow{-0.41} Cr^{2+} \xrightarrow{-0.91} Cr$

Answer the following questions :

7

(a) Write the half reaction for the conversion

of $Cr_2O_7^{2-}\longrightarrow Cr^{3+}$

- (b) Is there any tendency of Cr²⁺ to reduce to Cr ? Give reasons.
- (c) Calculate the skip step emf for $Cr^{3+} \longrightarrow Cr$ change.

6

(ii) A blackish brown coloured solid (A) when fused with alkali metal hydroxides in presence of air produces a dark green compound (B), which on electrolytic oxidation in alkaline medium gives a dark purple coloured solution of compound (C). Acidified aqueous solution of (C) on treatment with oxalic acid gives a colourless species (D). Identify (A), (B), (C) and (D). Also explain the sequence of reactions involved. This question paper contains 4 printed pages

Your Roll No.

Sl. No. of Q. Paper

Unique Paper Code

Name of the Course

Name of the Paper

Semester

:32171402

: 2202

: B.Sc. (Hons.) Chemistry

I

: Organic Chemistry - III

: IV

Time : 3 Hours

Maximum Marks: 75

Instructions for Candidates :

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt **six** questions in **all**.
- (c) Question NO.1 is compulsory and carries15 marks.
- (d) All other questions are of 12 marks each.
- 1. (a) Amine 'A' (C₇H₉N) reacts with benzoyl choride in the presence of sodium hydroxide to give compound 'B' (C₁₄H₁₃NO). 'A' reacts with benzene sulphonyl chloride in potassium hydroxide solution to give water insoluble precipitate of compound 'C'. Identify compound A and give equation for its conversion into the compound B and C. Name the reaction involved in the conversion of A to B with mechanism. 6

- (b) Anthracene undergoes electrophilic substitution reactions at 9-position. Explain. 3
- (c) How will you distinguish between 1°, 2° and 3° amins using Hinsberg test.
 3
- (d) Suggest a best reagent for the conversion of pyrrole to (i) 2-nitropyrrole, (ii) Pyrrole-2sulphonic acid, and (iii) Pyrrole-2-aldehyde. 1×3=3
- 2. Carry out the following conversions using the necessary reagents : 3×4=12
 - (i) Nitrobenzene to p-nitrophenol
 - (ii) Aniline to p-nitrobenzoic acid
 - (iii) Naphthalene to o-aminobenzoic acid
 - (iv) Pyridine to 2-pyridylacetic acid
- **3.** (a) Arrange the following nitroanilines in the order of decreasing basicity with suitable explanation : 3

2

- (b) Give the order of reactivity of 5-membered heteroaromatic compounds with suitable explanation. 3
- (c) Pyridine undergoes nucleophilic substitution mainly at position-2. Explain.
- (d) Pyrrole does not undergo Diels-Alder reaction while N-acetyl pyrrole undergoes Diels-Alder reactions. Explain. 3
- Complete the following and write the name of reaction involved in each case : 2×6=12

(v)
$$CH_{3}CH_{2}NH_{2} \xrightarrow{CHCl_{3}, KOH} E$$

(vi) $H_{3}C \xrightarrow{C} C \xrightarrow{H} NH_{2} \xrightarrow{Br_{2}, KOH} F$

(a) Explain the reactions which indicate the position of linkage between pyridine and N-methylpyrrolidine in nicotine.

- (b) How will you distinguish between nitriles and isonitriles ? Explain giving reactions involved. 3
- (c) What is isoprene rule ? Indicate the isoprene units in the structure of citral. 3
- 6. (a) Give the synthesis of nicotine from from 6
 - (b) What happens when :
 - (i) Citral is treated with aq. K_2CO_3
 - (ii) Nicotine is treated with $K_2 Cr_2 O_7 / H^+$
 - (iii) Phenanthrene is subjected to ozonolysis.
- 7. Write short note on the following (any **three**) :

4×3=12

2×3=6

- (a) Gabriel phthalimide synthesis
- (b) Skraup Quinoline synthesis
- (c) Fischer Indole synthesis
- (d) Hoffmann bromamide degradation

[This question paper contains 8 printed pages]

Your Roll No.

Sl. No. of Q. Paper: 2203ICUnique Paper Code: 32171403Name of the Course: B.Sc. (Hons.) ChemistryName of the Paper: Physical Chemistry-IVSemester: IV

Demostor

Time : 3 Hours

Maximum Marks : 75

Instructions for Candidates :

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
 - (b) Attempt **six** questions in all.
 - (c) Question **No.1** is compulsory.
 - (d) Attempt at least **one** question from each
 - Section.
 - (e) Use of scientific calculator is permitted.
- Explain any five of the following : 5×3
 - (a) Larger the activation energy, greater is the effect of temperature rise on rate constant.
 - (b) The molar conductivity of Li⁺ ion is less than that of Cs⁺ ion in aqueous medium.

- (c) Walden's Rule is not applicable to cations of small size.
- (d) Rate of a photochemical reaction is independent of the initial concentration of the reactants.
- (e) Quantum efficiency of fluorescence decreases with the concentration of the solution.
- (f) Beer's law fails in case of aqueous dilute $K_2Cr_2O_7$ solution.
- (g) It is rare for a reaction to have molecularity more than three.

Section - A

- (a) Discuss the asymmetry effect and electrophoretic effect in Debye Huckel Onsager theory.
 - (b) Explain using Grotthus mechanism, how H⁺ ion and OH⁻ ions have abnormally high conductance values.
 3
 - (c) The conductivity of a saturated solution of $[Co_2Fe(CN)_6]$ is 3.00 x10⁻⁶?⁻¹ cm⁻¹ and that of water used is 4.1 x 10⁻⁷ Ω^{-1} cm⁻¹. The ionic molar conductivities of Co²⁺ and Fe(CN)₆⁴⁻ are 87 Ω^{-1} cm² mol⁻¹ and 444 Ω^{-1} cm² mol⁻¹ respectively. Calculate the solubility and solubility product of $[Co_2Fe(CN)_6]$ in water at 25°C.

3. (a) What is transference number ?

Derive the expression t α v for an ion where t is the transference number and v is the absolute velocity of the ion. 5

- (b) Explain Wien effect.
- (c) A potential of 5.60 V is applied to two electrodes placed 11 cm apart; how far is an ammonium ion expected to move in 2 hours in a dilute solution of ammonium salt at 25°C? (Given : λ (NH₄⁺) = 73.4 Ω^{-1} cm² mol⁻¹)
 - 4

3

4. (a) Calculate the transport numbers of H⁺ ion and Cl⁻ ion from the following data obtained from the moving boundary method using cadmium chloride as the indicator electrolyte.

(Given : Atomic mass of $Ag = 108 \text{ g mol}^{-1}$)

Concentration of HCl solution = 0.100 N

Mass of silver deposited in the coloumeter

= 0.1209 g

movement of the boundary	= 7.50 cm
Cross – section of the tube	$= 1.24 \text{ cm}^2$
	1

2

3

(b) Discuss the titration curves obtained in the conductometric titrations of : 4

(i) HCl versus NaOH solutions

(ii) CH₃COOH versus NaOH solutions

(c) Molar conductivity of 0.01 M solution of $MgCl_2$ is 195 Ω^{-1} cm² mol⁻¹ at 25°C. A cell with electrodes that are 1.80 cm² in surface area and 0.50 cm apart is filled with 0.01 M MgCl₂ solution. How much current will flow when the potential difference between the two electrodes is 5.0 V?

Section - B

5. (a) For the given **second** order reaction

 $A + A \rightarrow Products$

- (i) Write down its differential rate law and deduce the integrated rate law.
- (ii) Show that the half-life of such a reaction is inversely proportional to the initial concentration of A.
- (b) Write down the differences between order and molecularity. 3

(c) The following results were obtained from the saponification of ethyl acetate

 $\begin{array}{l} \mathrm{CH_3COOC_2H_5} + \operatorname{NaOH} + \mathrm{H_2O} \rightarrow \mathrm{CH_3COOH} \\ + \mathrm{C_2H_5OH} \end{array}$

using equal concentrations of ester and alkali.

Time/ min	0	4.89	10.07	23.66	8
Vol. of acid/ml	47.65	38.92	32.63	22.58	11.84

Show that the reaction follows second order kinetics. 5

6. (a) Using Steady State Approximation, derive the differential rate law for the reaction between NO₂ and CO at low temperature.

 $NO_2 + CO \rightarrow NO + CO_2$

The proposed reaction mechanism is :

 $NO_2 + NO_2 \xrightarrow{k_1} NO_3 + NO$ (slow)

5

 $NO_3 + CO \xrightarrow{k_1} NO_2 + CO_2$ (fast) 4

(b) Compare the rate constants as given by Arrhenius equation and the Collision theory and show that :

$$E_a = E_0 + \frac{RT}{2}$$

(c) For the reaction :

 $2 \text{ NOC} l (g) \rightarrow 2 \text{NO} (g) + C l_2$

The rate constant is $2.8 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ and $7.0 \times 10^{-1} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ at 300 K and 400 K respectively. What is the energy of activation for the reaction ?

7. (a) Kinetics of enzyme catalysed reactions is studied by Michaelis - Menten mechanism. Using the Steady State approximation, relate enzyme and substrate concentration to rate of the reaction. Also discuss when Michaelis Menten constant >> substrate concentration, how the rate variation takes place.

- (b) Outline any two methods which are employed for determination of order of a reaction.
- (c) At 380°C, the half life period for the first order decomposition of H₂O₂ is 360 min. The energy of activation of the reaction is 200 kJ mol⁻¹. Calculate the time required for 75% decomposition at 450°C.

4

Section - C

- (a) Derive Stern -Volmer Equation. What is its significance ?
 - (b) What is Quantum yield or quantum efficiency? Write down the reasons for high and low quantum yield.
 - (c) In the photochemical combination of $H_2(g)$ and $Cl_2(g)$ a quantum efficiency of about 1 x 10⁶ is obtained with a wavelength of 480 nm. What amount of HCl will be produced under these conditions if one calorie of radiant energy is absorbed ?

7

4

P.T.O.

6

(a) The mechanism of photochemical dimerisation of Anthracene (A) is given below : 9.

 $A \xrightarrow{hv} A^*$

 $A^* + A \xrightarrow{k_2} A_2$ $A_2 \xrightarrow{k_3} 2A$

 $A^* \xrightarrow{k_4} A + hv$

Derive the expression for the rate of 4 formation of dimer, A_2 .

- (b) Write the differences between fluorescence 3 and phosphorescence.
- 2×2.5 (c) Write short notes on any two :
 - (i) Kohlrausch's law of independent migration of ions
 - (ii) Chemiluminescence
 - (iii) Pseudo-unimolecular reactions

SP. NO. 7 P.P. 3566

: 217401

Your Roll No. 2019 : B.Sc. (H) CHEMISTRY

Unique Paper Code Name of the Course Name of the Paper Semester

: Inorganic Chemistry - III (Paper

: IV

Duration : 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper 1.
- Attempt any FIVE questions. 2.
- All questions carry equal marks. 3.
- 1. Explain any Five of the following, giving suitable reasons:
 - a) Silicones are inert and water repellent.
 - b) PbCl₂ is more stable than PbCl₄.
 - c) Boric acid acts as a strong acid in presence of cis-diols.
 - d) Beryllium shows anomalous behaviour in its group.
 - c) Solubility of noble gases in water increases on moving down the group.
 - f) The solubility of alkaline earth metal sulphates decreases down the group.

(3x5)

- 2. a) What are silicates ? Discuss the structures of pyro silicates, chain silicates and cyclic silicates..
 - b) What is allotropy ? Explain the various allotropic forms of phosphorus.
 - c) Write the names of oxy acids of chlorine in various oxidation states and arrange them in order of increasing acid strength giving justification. (5, 5, 5)

- a) What do you understand by diagonal relationship? Explain this relationship between Li and Mg.
 - b) How will you prepare XeF, and XeF. Draw the molecular orbital diagram of XeF.
 - c) What are interhalogen compounds ? Why are they more reactive as compared to halogens ? Using VSEPR theory discuss the structures of CIF₃.

(5,5,5)

4. a) Draw the structure of i) Basic Beryllium acetate and ii) XeO3.

- b) Give the preparation of Borazine. Why is it called Inorganic Benzene? Draw its structure.
- c) What are hydrides? How are they classified? State a brief account of ionic hydrides.

(5, 5, 5)

- a) Give the preparation and structure of Caro's acid. Give its reaction with i) H₂O₂ and ii) KI.
 - b) How will you prepare (NPCl₂)₃? Explain the structure and bonding of (NPCl₂)₃. What are the potential uses of these compounds?
 - c) What is inert pair effect? Explain the inert pair effect by taking example of group 14 elements. (5,5,5)
- 6. Write short notes on any Three of the following:

a) Silicones

- b) Complexometric Titrations
- c) Unusual Oxidation States
- d) Pseudohalogens

(5x3)